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Abstract— Gradient optimization methods are often used to 
tackle problems of computer modeling of materials’ crystal 
structures. This raises the need to determine the exact value of the 
gradient of the Tersoff potential using specific parameters of this 
potential for the modeled substance. Based on the technique of the 
Fast Automatic Differentiation the formulas that allow the calculation 
of the exact value of the above-mentioned gradient were derived. 
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I.  INTRODUCTION 
For modeling solid atomic structures the Tersoff Potential 

is often used ([1]). The Tersoff Potential depends on ten 
parameters specific to the modeling material. These 
parameters are usually unknown and they should be identified 
as the solution of the inverse problem. In [2] one possible 
optimization problem was considered. It consists of 
minimizing the following cost function 
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where iw  is the weight factor; iy~  is the value of the i -th 

material characteristic obtained experimentally; and )(ξiy  is 
the value of the same material characteristic calculated using 
the Tersoff Potential with ξ  parameters ( mR∈ξ  are vector 
parameters to be identified). The solution of the problem is 
looked for on the set mRX ⊆ , which is a parallelepiped. A 
required set of parameters has to provide the minimum 
deviation of the calculated characteristics of the material from 
the known experimental values. For numerical solution of this 
problem the gradient minimization methods are often used. 
One of the terms in formula (1) is the total energy of the 
system of atoms. There exists the need to calculate efficiently 
the exact gradient of the total energy with respect to 
parameters of the Tersoff Potential. 

This gradient is often calculated (see, for example, [2]) 
using the finite difference method. Studies have shown that 
finite difference method does not allow to calculate the 
gradient of the energy of atoms’ system with respect to 

Tersoff parameters with acceptable accuracy and requires 
)1( +m  times to calculate the value of the function. 

In this paper, we build a multistep algorithm to calculate 
the value of total atoms’ system energy in the case where this 
energy is determined by Tersoff Potential and a multistep 
algorithm to calculate the conjugate variables, by which the 
value of the above-mentioned gradient is determined with 
machine precision on the basis of the Fast Automatic 
Differentiation methodology. 

II. ALGORITHM FOR СALCULATION THE TOTAL ENERGY OF 
ATOMS’ SYSTEM AND THE ADJOINT VARIABLES 

Let ),,( 321 kkkk xxxr =  be the coordinates of some 

lattice atom. As to total energy ),...,,( 21 IrrrE  it is 
calculated with the help of expression 
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21 ),...,,( , where ijV  is the interaction 

potential between atoms marked i  and j  ( i -atom and j -
atom). In present paper the Tersoff Potential is used as 
interaction potential: 
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Here, I  is the number of atoms in considered system; ijr  

is the distance between i -atom and j -atom; ijkθ  is the angle 
between two vectors, first vector begins at i -atom and 
finishes at j -atom, second vector begins at i -atom and 

finishes at k -atom; R  and cutR  are known parameters, 
identified from experimental geometric properties of the 
substance. Tersoff Potential depends on these ten parameters 
( m =10), specific to modeled substances: eD , er , β , S , 

η , γ , λ , c , d , h . 

For using the Fast Automatic Differentiation to calculate 
the gradient of cost function, we construct the multistep 
algorithm to determine the total energy E  of atoms' system 
(interaction potential is Tersoff Potential). The distance 
between i -atom and j -atom is determined by the formula 
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where iii xxx 321 ,,  are the Cartesian coordinates of i -atom. 

If ijkθ  is the angle between two vectors, connecting i -atom 
with j -atom and k -atom respectively, then 
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== θ . For compactness further in 

the study we introduce vectors u  and z  having the following 

coordinates: [ ]TT uuuu 1021 ,...,,= , [ ]TT zzzz 1721 ,...,,= , 

where   eDu =1 , eru =2 , β=3u , Su =4 , η=5u , 

γ=6u , λ=7u , cu =8 , du =9 , hu =10 ; 
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The total energy of the atoms’ system with the help of new 

variables may be rewritten as follows: ∑∑
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Variables 1721 ,...,, zzz  (the phase variables) are determined 

by the specified above multistep algorithm ),,( lll UZlFz = , 

( 17,1=l ), where lZ  is the set of elements nz  in the right 

part of the equation ),,( lll UZlFz = , and lU  is the set of 

elements nu  that appear in the right side of this equation. 

Note that each component lz  depends on a number of other 

components ( ij
lz  or ijk

lz ). 

Below are represented the general formulas of the Fast 
Automatic Differentiation (see [3]). They will be used later to 
calculate the gradient of the total energy E  of atoms' system 
with respect to parameters of the Tersoff Potential. 

Let vectors nRz∈  and mRu∈  satisfy the following 
system of nonlinear scalar equations (multistep process): 

),,( iii UZiFz = ,  ni ≤≤1 , (2) 
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where iZ  is the set of vectors jz , that appear at the right part 

of equality (2), and iU  is the set of vectors ju , that appear at 

the right part of the same equality (2). Usually vectors nRz∈  
and vectors mRu∈  are called dependent (phase) and 
independent (control) variables respectively. Let differentiable 
function ),( uzW  define mapping 1: RRRW mn →× . Then the 
composite function )),(()( uuzWu =Ω  is differentiable, and 

its gradient with respect to the independent variables iu  is 
given by the formula 

q
Kq

qq
T
uu

i
pUZqFuzW

du
d

i
ii ∑

∈
+=

Ω ),,(),( .  (3) 

The multipliers n
i Rp ∈  are the conjugate variables that 

are defined by the following system of linear algebraic 
equations: 
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where iQ  and iK  are the index sets: 

{ }jii ZznjjQ ∈≤≤= ,1: ,   { }jii UunjjK ∈≤≤= ,1: . 

The partial derivatives of function 
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variables )10,1(, =mum  (components of gradient), 
according to equations (3), (4) are determined by the relations: 
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where the conjugate variables ip  are defined by the following 
system of linear algebraic equations: 

q
Qq

qq
T
zzl pUZqFzEp

l
ll ∑

∈
+= ),,()( ,  (5) 

{ }jll ZzjQ ∈= : ,  ( 17,1=l ). 

Note that 0))(( =uzE
mu  because function ))(( uzE  clearly 

does not depend on the vector components u . 

In accordance to (5), for all 
jikIkijIjIi ,,,1,,,1,,1 ≠=≠==  conjugate variables 

corresponding to the phase variables 1721 ,...,, zzz  are 
defined by the equations: 
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The conjugate variables are calculated in the following 

order: 11617 ,...,, ppp . 

III. DETERMINING THE COMPONENTS OF THE GRADIENT 
Partial derivatives of the function ))(()( uzEu =Ω  with 

respect to independent variables )10,1(, =mum  are 
determined by these relations: 
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The received formulas for calculation of the gradient of the 
total energy of atoms’ system with respect to Tersoff 
parameters are quite complex and bulky. Therefore, there is a 
natural question whether it would be better to use simpler 
approaches to calculate the gradient of the function 

))(()( uzEu =Ω , for example, finite difference method. 

The problem of selection of Tersoff parameters for one-
component silicon crystal was considered in [2]. To determine 
the initial approximations in this work an admissible set 

{ }iii uRuX ξξξξ ≤≤∈== :],[ 10  was chosen in such a 
way that it clearly contains all the possible values of 
parameters, namely: 

)2;1;10000;5.0;105;1.0;5.0;5.0;5.0;5.0( 8 −⋅= −ξ , 

)1.0;30;200000;3;103;2;5;5;5;10( 6 −⋅=ξ − . 

In [4] the comparison of function gradients, calculated by 
the finite differences and by using Fast Automatic 
Differentiation formulas (6), was presented. In TABLES I and 
II are given the values of the gradient for two specific 
parameters of the simulated substance: γβ == 63 , uu . 

Input parameters 0.13 =u  and 7
6 10−=u  were selected 

from the range of acceptable values. The value ∆  in TABLES 
I and II indicates the increment of parameters iu  that were 
used during calculation of the gradient using the method of 
finite differences. 

As can be seen from TABLE I, during the calculation of 
the third component of the gradient value 710−≈∆  is the 
most suitable choice. It is about %10 5−  from initial 
approximation 0.13 =u . TABLE II shows that during the 

calculation of the sixth component of the gradient 1110−≈∆  
is the most appropriate choice. This is about %10 2−  from the 
initial approximation 7

6 10−=u . The results of the 
comparison are the following: 

1) when computing the gradient of a complicated function 
using finite differences one must conduct researches related to 
the choice of suitable increments of each parameter; 

2) for different parameters the researches must be carried 
out independently; 

3) for any parameter, if its value changed, the research must be 
carried out again; 

4) to calculate the gradient of a complicated function using 
finite differences one must ( 10=m ) times calculate the 
value of the function itself. 

TABLE I 

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 15



 

 

TABLE II 

 

In contrary to it, the Fast Automatic Differentiation 
enables us to calculate gradients of any complicated function 
with the machine accuracy for arbitrary number of parameters. 
The machine time that is needed to calculate the gradient does 
not exceed three times that of the calculation of the function 
itself (see [3]). 

IV. CONCLUSION 
The efficient algorithm to calculate gradients of the total 

energy of atoms’ system with respect to Tersoff parameters is 
presented. The algorithm is based on the Fast Automatic 
Differentiation technique. The formulas to compute the 
gradients are derived. These formulas allow to compute the 
gradients with the machine accuracy and computation time 
that is needed to calculate the gradient does not exceed three 
times that of the calculation of the function itself. The 
following conclusion is made: the calculation of above-
mentioned gradient using finite difference method is linked to 
substantial difficulties. 
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3=i
13 =u

 

Gradient, calculated 
using the finite 
difference method 

Gradient, calculated 
using the FAD-
methodology 

∆  
   

 
8.117021018694·10+0 

10-2 8.081747974402·10+0 
10-3 8.113495177169·10+0 
10-4 8.116668450269·10+0 
10-5 8.116985761664·10+0 
10-6 8.117017491927·10+0 
10-7 8.117020646736·10+0 
10-8 8.117020477982·10+0 
10-9 8.117016392362·10+0 
10-10 8.116973759797·10+0 
10-11 8.116529670588·10+0 
10-12 8.115286220800·10+0 

6=i  
=6u 710−  

Gradient, calculated 
using the finite 

difference method 

Gradient, calculated 
using the FAD-
methodology ∆  

   
 
1.288320939087·10+6 

10-6 9.846043659341·10+5 
10-7 1.248772527026·10+6 
10-8 1.284241101155·10+6 
10-9 1.287911733860·10+6 
10-10 1.288280750167·10+6 
10-11 1.288324366744·10+6 
10-12 1.288395748311·10+6 
10-13 1.289073070510·10+6 
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